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A Scalable, Collaborative, Interactive Light-field Display System

Michael Kiug, Thomas Burnett, Angelo Fancello, Anthony Heath, Keith Gardner,

Sean O'Connell, Craig Newswanger
Zebra Imaging, Inc., Austin, TX

Abstract

Lighi-field doploys provide a visnal semse of presence by
producing a jfull-parallax three-dimensional aerial and virtual
image of porrayed subject maner that sargfies muldple depih
cues and that can be engaged maotmrally and punimvely. This
paper documents a comprehensive Hghe-field display system,
including compriafon, phodomics, and IRferaciion sysiem
components, that is fexible and sealable, establivhing a basis for
application fo both large-scale collaborative and poriable, mobile
product architecmras.

Author Keywords

Light-field; holographic displays; 3D display; holographic video,
hogel, holography, integral photography, plemoptic, computed
photography

1. Introduction

In this paper we present the results of a muld-phase light-field

dizplay development effort, culminating in the ZS5cape@ Moton

Display (“ZMD™) family of techoologies and prototypes.

Achisved poals of the effort mchoda:

= Modulanty to support multiple display scales, orientations
and configurations, up to 5-foot (1.8 meter) diagonal

=  Full-parallax, ommi-visibility for cormect, natural, no-glasses
iD from all viewing positons

= Wide viewing-angle to accommodate many simultaneous
users and namral collaboration

=  Hapid update-rates, up to real-fime mieractive

=  Physically-accessible imagery to ensble direct natural,
gestural, touch and peripheral-based interacdon

*  Compatbility with a wide variety of exising 3D sofiware
applications

= Holographic
perceptibility

=  Ease of maintenance, self-contained computation

We outline the system design that was developed in this effort, the

photonic approaches explored apd their relevant constraimts,

computational requirements snd architecturss, and applicatons

demonsirated thus far with the profotype systems.

Light-field Displays: Light-Seld displays comprise a class of

three-dimensional visual information presentation devices capable

of creating realistic voluomeiric images of subject matter with all

depth-cues, mcloding foll {omni-directional) parallax, occlosion,

accommodation, and others, over a broad range of viewing

positions.  Such displays are generally not thought of as

immersive (such as virmal reality or other binocular systems

requinng the viewer to wear glasses, goggles or other wisual

peripherals) but rather as exocentrically-viewed devices, offering

the ability to natorally collaborate and interact with the Images

and with other simultansous viswears.

Methods to produce light-fields: Vanous approaches can be
considersd when designing a light-Seld display — Diffractve
holographic  based appreaches, involving rapid recording,

(hologram-like) image  fdelity and
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reconstruction, and erasure cycling, and others imvoling
computation of interference patterns with subsequent reconstruction
nsing high-resplution spatial light modulators have besn proposed
and prototyped. " Other approaches, based on integral photography
(“IF") mwolving cooverting high-density pixel information to
angularly-variant amrays of collimated light ray bundles also hawve
been demonsmated ** Both of these approaches make use of the
concept of 3 “hogel” or “holographic element™ as the basic optical
element of the lizht-Seld display. Here we detsil the ZScapef
Motion Display (ZMD™) lighi-feld display system that couples a
hybrid of refractive and light-modulating elements with 2 nowvel
system design and computztdonsl approaches to produce a
convincing  dymamic volumetric image that ensbles natural
perception, inferaction and collaboration.

Figure 1: System diagram for a modular light-field system.
Software and peripheral modules in blue.

2. System Design

Multiple system modules were considersd in the desizm of
ZMD™ (zee Figure 1). The Inferaction and Application
subsystem comprises the ares in which the user wiews and
manipulates the light-feld image  The Photonics Module
provides the images, comprising spatial ight modulator(s)(SLAs)
and hogel amray optics, where digital information is converted to
light in the system. The Computation and Distribmtion Layer faeds
the Photonics subsystem, cooverting abstract 3D representations
of data to pixel information, and providing that digital information
to {(ofien multple) spatial light modulators. The Computstion
system zlzo includes 3 separate off-the-shelf (OTS) workstation
that bosts commercial OTS and proprietary 3D software
applications. A proprietary software and  finowvare-based
operating system, called “Argon ™ integrates all of these physical
elaments. Argon comprisss plug-in modules that govern 3D data
interception, data distibution and synchronization, hogel
information rendering, and display calibration.

3. ZMD™ Light-field Photonics Approaches
Phofonics Design: To produwce volumetric imagery for this
work, we chose o use 3 modified IP-based approach to light-fHeld
zeneration that comwverts pixel information to quasi-collimated
angularly distributed light beam amrays. In this appreach, a fixed
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relationship exists between pixel density, hogel optic size, and
hogel-optic numericsl apermre, determining the viewing angle,
resolution, and nominal depth budget of the display (detailed in
Figmre 2). In addition, becanse SLMs are required with pixel
sizes less than 50 microns and large physical areas {greater than
15 cm diagonal), multiple SLM projectors mmst be tiled Several
tiling, relay, SLM and optical appreaches were considered in this
resaarch, and two particularly successfol systems are documented
hera.

b= i)
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Figure 2: Key basic IP-based light-field hogel optic
variables and their interrelationships

Approach 1: OLED + Fiber Tapers: This approach integrates
fiber tapers to magnify and sbut the output fom mmltpls
neighboring organic light-emitting diede (OLED) micro-displays,
producing 8 bed of pixels with uniform emission momerical
aperiare (MA) and telacmu'il:ily.] The OLED micre-displays are
monochromatic with resolution of 800 by 600 pixels and a relayed
pixel spacing of approximately 31 microns, determined by 2X
fiber taper-based mapnification We nsed Imm-~diameter glass
doublet lenslets as a refractive component of the hogel optic array,
with inter-lenset sbsorbing zrid fo mitigate crosstalk. A mnowel
mechanical structore was designed to support the OLED displays,
and fiber mpers in groups of six, and allow for minimal seam
widths between neighboring tiles (see Figure 3, laft).

Approscs 2 (FGENTT)

Appesach 1

=FRU" Tile Componaits

- BTY hogeln

Lighiszumma
fFGE LEDH

Figure 3: Two of the photonics approaches developed and
demonstrated in present research.

Approach 2: LC + Free-space Optical Relay: Transmiszive
liquid crystal (LC) panels and less-expensive, lighter-weizht
polymer doublet magnifying relays have been incorporated im
mnother spproach, dubbed “GEN1™ (see Figure 3, center and
nght). GEN]1 monochrome LC panels with resolution 1920 by
1080 and pimel size of B.5 microms magnified and relayed to
pixels approximately 19 microns in size. A reduction in cost and
increase in lifetime {due to replacement of the OLED panels with
long-life LC) compared to Approach 1 also incwrs reduced
telecentricity and some wignetting snd luminance non-uniformity

Distribution A: Approved for public release; distribution unlimited. 88ABW Cleared 5/29/2013; 88ABW-2013-2508

due to wariable retardation across LC panels and relay NA
Additionally, a light-source and homogenizer are also integrated,
increasing the physical length of the system  Color is achieved
through separation temporal mmltiplexing at 120 Hz with RGB
LED light sources, resulting in a color frame rate of 40 Hz in this
desigm.  Each tile wunit comprises 24 LC-based modules,
presenting some challenge to achieving color and brighmess
uniformity and conmibuting to some artifacts in the resulting light-
field image.

Tiling Approach to Scaling: ZMD™ has been designed with
a tiled approach to scaling, to enable varions sizes of displays to
be produced with common components and a simple and robust
mechanical assembly (see Fipure 4). The GEN] protonype
display, based on photonics Approach 2, consists of 9 dlas, each
providing 50 megapixels and 84 by 72 1.6 mm diameter hogels, in
a 54 on diagonal assembly. The tle (schematically shown m
Figure 4 - left) represents the basic feld-replaceable unit (“FEIU™)
of the GEM1 display system. Arbirarily-sized displays can be
assembled with mmltiple tiles, each of which attaches to a
commmunications backplane within the mechanical support chassis.

Figure 4: Self-contained files assemble modularly to
create a single ZMD™ . Multiple 8-tile, 54-cm diagonal
prototypes have been constructed and are in operation.

4. Computation and Software Architecture

The GEN1 EMD™ zystem architecture integrates a sophisticated
operating system, called “Argon™ for host application data
extraction, internal data distribution to render nodes, light-feld
hopel-view rendering, data distmibution and synchronization to
SLM buffers, display calibration and interaction device interface.
Scene Description Interception and Rendering: Graphical
3D information, in the form of OpenGL scene descriptions, is
intercepted from the computer hosting the software application,
and transmitted via Ethernet link to the ZMD™ device in real-
time. Within the ZMD™, scene information is buffered to all of
the graphical processing units (GPUs) in the render enpine. The
GPUs render each hogel view with a “double-frostom™ modal
camera, using an OpenGL-based renderng alporithm — The
rendering is performed, im essence, fom the modeled display
emission surface perspective, and thus produces hogel views in a
single step process, elimimating the need for cosdy and mmnurgr-
intensive block-transform post-processing steps (see Fignre 5). o
Mhinltiple altermatives for hogel rendering have been tested, with
the best speed'guality-balanced results to-date produced with
scan-line based approaches. In the 9-ule GENI display pictured
in Figure 4, each hogel view image comnsists of 78 by 76 pixels,
spanning 90 by 90 degrees of light-field ouiput per hogel, and
each GPFU im the system is responsible for generating 2014
independent hogel views.
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Figure 5: Principle of double-frustum rendering used for parallel generation of light-field data.

Sysfem Computational Archifecfure: Argon has been
designed for maximmm flexibility, accommodative for scaling the
physical display and the mimber of rendering nodes, aliemative
types of rendering algorithms, multiple forms of spatial Light
modulation, and methods of display calibration. Figure § details
Argon functions.

ZMD Computational Architecture
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Figure &: Functional schematic of the ZMD Argon
computational operating system

The Argon scene-description infeTceptor capiures the 3D scenme
drawn by the host application in real-time and replicates the scens
information across the amray of render nodes within the display
over standard Ethernet In this manner, the ZMD™ can be
updated as the scene is modified and manipulated by the host
application Real-time mteraction with the lizht-field scene can be
accomplished by registering a 3D IO device fo the ZMD display
space Inferasctions with the virmal 3D space are still managed by
the host application. Thus, any I'0 device that is compatible with
the host software spplication and the host compufer may be
seamlessly integrated with the display (see Figure T).

Figure 7: Multiple interaction peripherals have been
integrated with ZMD, including A: trackball, and B: a &
degree-of-freedom optically-tracked stylus.

5. Results and Measurements

An early prototype based on photonics Approach 1, is pictured in
Figure 8(L). Here, 150 monochrome OLED panels are tled
topether to produce a 35cm dizgonal display with a 90 depree
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field of view. The horizentslby-oriented prototype enables omnd-
directional viewing from 360 deprees. The interactive image
upedate rate for this system was demonstrated at approximately 5
Hz, utilizing 2005-vintage OT5 Apple MachMini (Intel) CFUs and
graphics processing hardware. Pre-generated movie sequences
display at frame-rates of over 15 Hz on the system

Figure 8: (L) Monochrome, OLED-based prototype based
on Approach 1 photonics and off-shelf computation, (R} An
aerial image is demonstrated by moving a sheet of paper
above the ZMD™ GEN1 prototype.

The 9-tile ZMD™ GEN] protorype, pictared in Figures 4, 7 and
B(R), was measured for performance over a number of key
specifications. Resnlts of these measurements are summarized in
Table 1. The GEN1 design features modified reference design
CPU'GPU computation engines and field-proprammable gate
armay (FPGA)- based post-processing and hogel data distribution.

Table 1: ZMD™ GEM1 8-file prototype specifications

Lateral Image Size 254mm X 413mm, 0.54m diag.
Viewing Fange 2607, viewable from 4-sides
Brghtness ~ ] cdim?
Confrast Tt
Calor full color, over 4,000 colors
Uniformity 65
Irrage Cepth +135mm
MNominal image resoluion 2.5mim points (average)
Resohable image elements 1.800\cm?
Cutput Range (from normal) | $45°
Formm factor Horizontal orientation (table)
Irrage Update Rate =4 Hz (pre-computed)
Refresh Rate 16 Hz (simple content), 3Hz average
Interactive Response Time .1 sec
Active Hogel Yield =G
Weight 150 kg
Powser consumption 2.5k
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Figure 10: Light-field imagery and applications produced using the ZMD 8-Tile System. A: Medical imagery for training
application, B: LIDAR imagery of MIT main buildings, C: Mission planning integrating LIDAR, photography, and CGI
symbology, D: Real-time telepresence demonsiration with 15Hz. scanning LIDAR system, network transmission, and display

on the 8-Tile System at 5Hz update rates.

&. Discussion and Conclusion

A flexible, scalable, interactive light-field display system has
been demonstrated with mmitiple implementations. The system
has been integrated for research in 8 mumber of application
areas, and with 3 oomber of usage paradigms. Fomre work will
focus on improvement of optical and 5LM quality, scaling and
optimization for other use-modalities such as mobile and single-
user, integration of altermative approaches for light-field
rendering and hogel data distribuwtion architectures, and
incorporation of emarging alternative imteraction and real-time
data captare peripheral systems.

7. Impact of This Research

The development has resnlted in a3 successful basaline light-field
system design and multiple reductions to practice fior practical
light-field display that can be readily scaled, directly-mtegrated
and performance-opiimized for particular applications and
confipurations. The system presented provides a complete
capability that is unprecedented in the literature. Although other
researchers have presented papers on what sppear fo be similar
displays, those displays presented do not appear to be modular
or scalsble, mor do they appear o have scalable, real-time
operating systems that ensble real-time manipulation of a large,
full-color light-field or direct integration with arbitrary software
applications through use of a scens description imterceptor
madule  Finslly, unprecedented real-time light-field capture,
network transfer, and display has been demonsirated in the
context of the presemt research, offering potential for live
“holographic” porrayal of real-world scenes and subject matter.
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